Quectel Wireless Solutions 201603EC20 Multi-mode LTE module User Manual

Quectel Wireless Solutions Company Limited Multi-mode LTE module

User manual

    EC20 Hardware Design   LTE Module Series   Rev. EC20_Hardware_Design   Date: 2015-10-23 www.quectel.com
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            1 / 83      Our  aim  is  to  provide  customers  with  timely  and  comprehensive  service.  For  any assistance, please contact our company headquarters:  Quectel Wireless Solutions Co., Ltd.   Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233 Tel: +86 21 5108 6236 Mail: info@quectel.com  Or our local office, for more information, please visit:   http://www.quectel.com/support/salesupport.aspx   For technical support, to report documentation errors, please visit:   http://www.quectel.com/support/techsupport.aspx Or Email: Support@quectel.com   GENERAL NOTES QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON  THE  INFORMATION.  THE  INFORMATION  SUPPLIED  HEREIN  IS  SUBJECT  TO CHANGE WITHOUT PRIOR NOTICE.     COPYRIGHT THIS  INFORMATION  CONTAINED  HERE  IS  PROPRIETARY  TECHNICAL  INFORMATION  OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT  AS  WELL  AS  UTILIZATION  OF  THIS  CONTENTS  ARE  FORBIDDEN  WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR  PAYMENT OF  DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.    Copyright © Quectel Wireless Solutions Co., Ltd. 2015. All rights reserved.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            2 / 83     About the Document    History   Revision   Date Author Description 1.0 2015-02-13 Mountain ZHOU/ Mike ZHANG Initial 1.1 2015-08-14 Mountain ZHOU 1.  Added UART interface pins 2.  Added FOTA upgrade mode 3.  Updated module dimension information 4.  Updated functional diagram 5.  Updated power supply reference circuit 6.  Updated description of UART interface 7.  Updated current consumption 8.  Updated GNSS sensitivity 1.2 2015-10-23 Mountain ZHOU 1.  Updated internet protocol 2.  Updated UART interface feature 3.  Updated functional diagram 4.  Updated turning on timing 5.  Updated GNSS performance 6.  Released USIM_PRESENCE function
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            3 / 83     Contents About the Document ................................................................................................................................... 2 Contents ....................................................................................................................................................... 3 Table Index ................................................................................................................................................... 5 Figure Index ................................................................................................................................................. 6 1 Introduction .......................................................................................................................................... 7 1.1. Safety Information...................................................................................................................... 8 2 Product Concept .................................................................................................................................. 9 2.1. General Description ................................................................................................................... 9 2.2. Directives and Standards ......................................................................................................... 10 2.2.1. FCC Statement ............................................................................................................... 10 2.2.2. FCC Radiation Exposure Statement .............................................................................. 10 2.3. Key Features ........................................................................................................................... 11 2.4. Functional Diagram ................................................................................................................. 13 2.5. Evaluation Board ..................................................................................................................... 14 3 Application Interface ......................................................................................................................... 15 3.1. General Description ................................................................................................................. 15 3.2. Pin Assignment ........................................................................................................................ 16 3.3. Pin Description ......................................................................................................................... 17 3.4. Operating Modes ..................................................................................................................... 22 3.5. Power Saving ........................................................................................................................... 23 3.5.1. Sleep Mode .................................................................................................................... 23 3.5.1.1. UART Application ................................................................................................. 23 3.5.1.2. USB Application with USB Remote Wakeup Function ........................................ 24 3.5.1.3. USB Application with USB Suspend/Resume and RI Function .......................... 25 3.5.1.4. USB Application without USB Suspend Function ................................................ 25 3.5.2. Airplane Mode ................................................................................................................ 26 3.6. Power Supply ........................................................................................................................... 27 3.6.1. Power Supply Pins ......................................................................................................... 27 3.6.2. Decrease Voltage Drop .................................................................................................. 27 3.6.3. Reference Design for Power Supply .............................................................................. 28 3.6.4. Monitor the Power Supply .............................................................................................. 29 3.7. Turn on and off Scenarios ....................................................................................................... 29 3.7.1. Turn on Module Using the PWRKEY ............................................................................. 29 3.7.2. Turn off Module .............................................................................................................. 31 3.7.2.1. Turn off Module Using the PWRKEY Pin ............................................................. 31 3.7.2.2. Turn off Module Using AT Command ................................................................... 32 3.8. Reset the Module..................................................................................................................... 32 3.9. USIM Card Interface ................................................................................................................ 34 3.10. USB Interface .......................................................................................................................... 36 3.11. UART Interface ........................................................................................................................ 37 3.12. PCM and I2C Interface ............................................................................................................ 40
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            4 / 83     3.13. ADC Function .......................................................................................................................... 42 3.14. Network Status Indication ........................................................................................................ 43 3.15. Operating Status Indication ..................................................................................................... 44 3.16. Behavior of the RI .................................................................................................................... 45 4 GNSS Receiver ................................................................................................................................... 46 4.1. General Description ................................................................................................................. 46 4.2. GNSS Performance ................................................................................................................. 47 4.3. Layout Guideline ...................................................................................................................... 48 5 Antenna Interface ............................................................................................................................... 49 5.1. Main/Rx-diversity Antenna Interface ........................................................................................ 49 5.1.1. Pin Definition .................................................................................................................. 49 5.1.2. Operating Frequency ..................................................................................................... 49 5.1.3. Reference Design .......................................................................................................... 50 5.2. GNSS Antenna Interface ......................................................................................................... 50 5.3. Antenna Installation ................................................................................................................. 51 5.3.1. Antenna Requirement .................................................................................................... 51 5.3.2. Install the Antenna with RF Connector .......................................................................... 52 6 Electrical, Reliability and Radio Characteristics ............................................................................ 55 6.1. Absolute Maximum Ratings ..................................................................................................... 55 6.2. Power Supply Ratings ............................................................................................................. 56 6.3. Operating Temperature ............................................................................................................ 56 6.4. Current Consumption .............................................................................................................. 57 6.5. RF Output Power ..................................................................................................................... 58 6.6. RF Receiving Sensitivity .......................................................................................................... 58 6.7. Electrostatic Discharge ............................................................................................................ 59 7 Mechanical Dimensions .................................................................................................................... 60 7.1. Mechanical Dimensions of the Module.................................................................................... 60 7.2. Footprint of Recommendation ................................................................................................. 62 7.3. Top View of the Module ........................................................................................................... 65 7.4. Bottom View of the Module ...................................................................................................... 65 8 Storage and Manufacturing .............................................................................................................. 66 8.1. Storage..................................................................................................................................... 66 8.2. Manufacturing and Welding ..................................................................................................... 66 8.3. Packaging ................................................................................................................................ 68 9 Appendix A Reference ....................................................................................................................... 69 10 Appendix B GPRS Coding Scheme ................................................................................................. 73 11 Appendix C GPRS Multi-slot Class .................................................................................................. 74 12 Appendix D EDGE Modulation and Coding Scheme ..................................................................... 75
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            5 / 83     Table Index TABLE 1: EC20 FREQUENCY BANDS .............................................................................................................. 9 TABLE 2: EC20 KEY FEATURES ...................................................................................................................... 11 TABLE 3: IO PARAMETERS DEFINITION ........................................................................................................ 17 TABLE 4: PIN DESCRIPTION ........................................................................................................................... 17 TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................. 22 TABLE 6: VBAT AND GND PINS ....................................................................................................................... 27 TABLE 7: PWRKEY PIN DESCRIPTION .......................................................................................................... 29 TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 32 TABLE 9: PIN DEFINITION OF THE USIM INTERFACE ................................................................................. 34 TABLE 10: USB PIN DESCRIPTION ................................................................................................................ 36 TABLE 11: PIN DEFINITION OF THE UART INTERFACE ............................................................................... 37 TABLE 12: PIN DEFINITION OF THE DEBUG UART INTERFACE ................................................................. 38 TABLE 13: LOGIC LEVELS OF DIGITAL I/O .................................................................................................... 38 TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACE .......................................................................... 41 TABLE 15: PIN DEFINITION OF THE ADC ...................................................................................................... 42 TABLE 16: CHARACTERISTIC OF THE ADC .................................................................................................. 43 TABLE 17: PIN DEFINITION OF NETWORK INDICATOR ............................................................................... 43 TABLE 18: WORKING STATE OF THE NETWORK INDICATOR..................................................................... 43 TABLE 19: PIN DEFINITION OF STATUS ........................................................................................................ 44 TABLE 20: BEHAVIOR OF THE RI ................................................................................................................... 45 TABLE 21: GNSS PERFORMANCE ................................................................................................................. 47 TABLE 22: PIN DEFINITION OF THE RF ANTENNA ....................................................................................... 49 TABLE 23: THE MODULE OPERATING FREQUENCIES ................................................................................ 49 TABLE 24: PIN DEFINITION OF GNSS ANTENNA .......................................................................................... 50 TABLE 25: GNSS FREQUENCY ....................................................................................................................... 51 TABLE 26: ANTENNA REQUIREMENTS .......................................................................................................... 51 TABLE 27: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 55 TABLE 28: THE MODULE POWER SUPPLY RATINGS .................................................................................. 56 TABLE 29: OPERATING TEMPERATURE ........................................................................................................ 56 TABLE 30: EC20 CURRENT CONSUMPTION ................................................................................................. 57 TABLE 34: CONDUCTED RF OUTPUT POWER ................................................................... 错误!未定义书签。 TABLE 35: EC20 CONDUCTED RF RECEIVING SENSITIVITY ...................................................................... 59 TABLE 39: ELECTROSTATICS DISCHARGE CHARACTERISTICS ............................................................... 59 TABLE 40: RELATED DOCUMENTS ................................................................................................................ 69 TABLE 41: TERMS AND ABBREVIATIONS ...................................................................................................... 69 TABLE 42: DESCRIPTION OF DIFFERENT CODING SCHEMES .................................................................. 73 TABLE 43: GPRS MULTI-SLOT CLASSES ...................................................................................................... 74 TABLE 44: EDGE MODULATION AND CODING SCHEME ............................................................................. 75
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            6 / 83     Figure Index   FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 14 FIGURE 2: PIN ASSIGNMENT (TOP VIEW)..................................................................................................... 16 FIGURE 3: UART SLEEP APPLICATION ......................................................................................................... 23 FIGURE 4: SLEEP APPLICATION WITH USB REMOTE WAKEUP ................................................................ 24 FIGURE 5: SLEEP APPLICATION WITH RI ..................................................................................................... 25 FIGURE 6: SLEEP APPLICATION WITHOUT SUSPEND FUNCTION ............................................................ 26 FIGURE 7: POWER SUPPLY LIMITS DURING TRANSMIT BURST ............................................................... 28 FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY............................................................................ 28 FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 29 FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................. 30 FIGURE 11: TURN ON THE MODULE USING KEYSTROKE .......................................................................... 30 FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 31 FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 32 FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 33 FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 33 FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 33 FIGURE 17: REFERENCE CIRCUIT OF 8-PIN USIM CONNECTOR .............................................................. 34 FIGURE 18: REFERENCE CIRCUIT OF 6-PIN USIM CONNECTOR .............................................................. 35 FIGURE 19: TEST POINTS FOR FIRMWARE UPGRADE .............................................................................. 36 FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 39 FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 39 FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 40 FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 41 FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 42 FIGURE 25: REFERENCE CIRCUIT OF THE NETWORK INDICATOR .......................................................... 44 FIGURE 26: REFERENCE CIRCUIT OF THE STATUS ................................................................................... 44 FIGURE 27: REFERENCE CIRCUIT OF ANTENNA INTERFACE ................................................................... 50 FIGURE 28: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 51 FIGURE 29: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) ................................................ 53 FIGURE 30: MECHANICALS OF UF.L-LP CONNECTORS ............................................................................. 53 FIGURE 31: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ........................................................... 54 FIGURE 32: MODULE TOP AND SIDE DIMENSIONS ..................................................................................... 60 FIGURE 33: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 61 FIGURE 34: BOTTOM PADS DIMENSIONS (BOTTOM VIEW) ....................................................................... 61 FIGURE 35: RECOMMENDED FOOTPRINT (TOP VIEW) .............................................................................. 62 FIGURE 36: RECOMMENDED STENCIL ......................................................................................................... 63 FIGURE 37: RECOMMENDED FOOTPRINT WITH PINS 117~140 ................................................................ 64 FIGURE 38: TOP VIEW OF THE MODULE ...................................................................................................... 65 FIGURE 39: BOTTOM VIEW OF THE MODULE .............................................................................................. 65 FIGURE 40: LIQUIDS TEMPERATURE ............................................................................................................ 67 FIGURE 41: CARRIER TAPE ............................................................................................................................ 68
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            7 / 83     1 Introduction    This document defines the EC20 module and describes its air interface and hardware interface which are connected with your application.    This document can help you quickly understand module interface specifications, electrical, mechanical details and related product information of EC20 module. Associated with application notes and user guide, you can use EC20 module to design and set up mobile applications easily.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            8 / 83     1.1. Safety Information    The following  safety precautions must be observed during all phases of the operation,  such as usage, service or repair of any cellular terminal or mobile incorporating EC20 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, Quectel does not take on any liability for customer failure to comply with these precautions.     Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) cause distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.    Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it switched off.  The  operation  of  wireless  appliances  in  an  aircraft is  forbidden to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers a Airplane Mode which must be enabled prior to boarding an aircraft.  Switch off your wireless device when in hospitals or clinics or other health care facilities.  These  requests  are  desinged  to  prevent  possible  interference  with sentitive medical equipment.    Cellular  terminals  or  mobiles  operate  over  radio  frequency  signal  and  cellular network  and cannot be guaranteed to  connect in  all  conditions, for example no mobile  fee  or  an  invalid  SIM  card.  While  you  are  in  this  condition  and  need emergent  help,  please  remember  using  emergency  call.  In  order  to  make  or receive call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.  Your cellular terminal or mobile contains a transmitter and receiver. When it is ON , it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.  In locations with potencially explosive atmospheres, obey all posted signs to turn off  wireless  devices  such as  your  phone  or  other  cellular  terminals.  Areas  with potencially exposive atmospheres including fuelling areas, below decks on boats, fuel  or  chemical  transfer  or  storage  facilities,  areas  where  the  air  contains chemicals or particles such as grain, dust or metal powders.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            9 / 83     2 Product Concept    2.1. General Description  EC20 is a series of LTE-FDD/WCDMA/GSM wireless communication module with receive diversity, which provides data  connectivity on  FDD-LTE, DC-HSPA+, HSPA+, HSDPA, HSUPA, WCDMA, EDGE  and GPRS networks. It can also provide GPS/GLONASS1) and voice functionality for your specific application.  Table 1: EC20 Frequency Bands             1. 1) GPS and GLONASS function is optional.  With a  tiny profile  of  32.0mm  × 29.0mm × 2.4mm,  EC20  can meet almost all  requirements for M2M application such  as  automotive,  metering,  tracking  system,  security  solutions,  routers,  wireless  POS, mobile computing devices, PDA phone and tablet PC, etc..  EC20 is an SMD type module, which can be embedded in application through its 140-pin pads including  EC20 FDD-LTE   (with Rx-diversity) B2/B4/B5/B12/B17 TDD-LTE   (with Rx-diversity) Not supported WCDMA   (with Rx-diversity) B2/B4/B5 TD-SCDMA   (with Rx-diversity) Not supported CDMA (with Rx-diversity) Not supported GSM 850/1900 GNSS GPS+GLONASS NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            10 / 83     76 LCC signal pads and 64 other pads. 2.2. Directives and Standards  The EC20 module is designed to comply with the FCC statements. FCC ID: XMR201603EC20 The Host system using EC20 should have label “contains modular’s FCC ID: XMR201603EC20”.  2.2.1.  FCC Statement Changes or modifications not expressly approved by the party responsible for compliance could void the   user’s authority to operate the equipment.  2.2.2.  FCC Radiation Exposure Statement  This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body as well as kept minimum 20cm from radio antenna depending on the Mobile status of this module usage. This module should NOT be installed and operating simultaneously with other radio. The manual of the host system, which uses EC20, must include RF exposure warning statement to advice user should keep minimum 20cm from the radio antenna of EC20 module depending on the Mobile status. Note: If a portable device (such as PDA) uses EC20 module, the device needs to do permissive change and SAR testing.   The following list indicates the performance of antenna gain in certificate testing. Part Number   Frequency Range (MHz)   Peak Gain (XZ-V)   Average Gain(XZ-V)   VS WR   Impedance         GSM850:824~894MHz      3R007   PCS1900: 1850~1990MHz      UMTS B2: 1850~1990MHz     UMTS B4: 1710~2155MHz     UMTS B5: 824~894MHz                                   1 dBi typ.   1 dBi typ.   2 max   50Ω    FDD B2: 1850~1990MHz     FDD B4: 1710~2155MHz     FDD B5: 824~894MHz  FDD B12: 699~746MHz  FDD B17: 704~746MHz
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            11 / 83     2.3. Key Features  The following table describes the detailed features of EC20 module.    Table 2: EC20 Key Features   Feature Details Power Supply Supply voltage: 3.3V~4.3V     Typical supply voltage: 3.8V Transmitting Power Class 4 (33dBm±2dB) for GSM850   Class E2 (27dBm±3dB) for GSM850 8-PSK Class E2 (26dBm±3 dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE FDD bands LTE Features Support 3GPP R9 CAT3 FDD Support 1.4 to 20MHz RF bandwidth Support 2 × 2 MIMO in DL direction FDD: Max 100Mbps (DL), 50Mbps (UL) WCDMA Features Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 HSUPA: Max 5.76Mbps (UL)   3GPP R8 DC-HSPA+: Max 42Mbps (DL) GSM Features R99: CSD: 9.6kbps, 14.4kbps GPRS: Support GPRS multi-slot class 12 (12 by default) Coding scheme: CS-1, CS-2, CS-3 and CS-4 Maximum of four Rx time slots per frame EDGE: Support EDGE multi-slot class 12 (12 by default) Support  GMSK  and  8-PSK  for  different  MCS  (Modulation  and  Coding scheme) Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Internet Protocol Features Support TCP/UDP/PPP/FTP/HTTP/SMTP/MMS/NTP/PING/QMI protocols Support the protocols PAP (Password Authentication Protocol) and CHAP (Challenge  Handshake  Authentication  Protocol)  usually  used  for  PPP connections SMS Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            12 / 83     USIM Interface Support USIM/SIM card: 1.8V, 3.0V Audio Features 1) Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression PCM Interface 1) Used for audio function with external codec Support 8-bit A-law 2), μ-law 2) and 16-bit linear data formats Support long frame sync and short frame sync Support master and slave mode, but must be the master in long frame sync USB Interface Compliant with USB 2.0 specification (slave only), the  data transfer rate can reach up to 480Mbps Used for  AT command communication, data  transmission, GNSS  NMEA output, software debug and firmware upgrade USB  Driver: Windows  XP, Windows  Vista,  Windows 7,  Windows  8/8.1, Window CE 5.0/6.0/7.0, Linux 2.6 or later, Android 2.3/4.0/4.2/4.4/5.0 UART Interface Main UART: Used for AT command and data transmission Baud rate reach up to 921600bps, 115200bps by default Support RTS and CTS hardware flow control Support multiplexing function Debug UART: Used for Linux console, log and GNSS NMEA output 115200bps baud rate Rx-diversity Support LTE/WCDMA/TD-SCDMA/CDMA Rx-diversity GNSS Features gpsOne Gen8A of Qualcomm (GPS and GLONASS) Protocol: NMEA 0183 AT Commands Compliant  with  3GPP  TS  27.007,  27.005  and  Quectel  enhanced  AT commands Network Indication Two  pins  including  NET_MODE  and  NET_STATUS  to  indicate  network connectivity status Antenna Interface Including main antenna (ANT_MAIN), Rx-diversity antenna (ANT_DIV) and GNSS antenna (ANT_GNSS) Physical Characteristics Size: 32.0±0.15 × 29.0±0.15 × 2.4±0.2mm Weight: approx. 4.9g Temperature Range   Normal operation: -35°C ~ +75°C Restricted operation: -40°C ~ -35°C and +75°C ~ +85°C 3) Storage temperature: -45°C ~ +90°C Firmware Upgrade USB interface and DFOTA RoHS All hardware components are fully compliant with EU RoHS directive
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            13 / 83      1. 1) Audio (PCM) function is only supported on Telematics version. 2. 2) This function is under development. 3. 3) When the module works within this restricted temperature range, RF performance might degrade. For example, the frequency error or the phase error would increase.  2.4. Functional Diagram    The following figure shows a block diagram of EC20 and illustrates the major functional parts.      Power management   Baseband   DDR+NAND flash   Radio frequency     Peripheral interface BasebandPMICTransceiver 2G NAND1G SDRAMPASwitchLNASwitchANT_MAIN ANT_DIVANT_GNSSVBAT_BBVBAT_RFAPTPWRKEYADCsVDD_EXT USB USIM PCM UARTI2CRESET_N19.2MXOSTATUSGPIOsSAWSAWControlIQ ControlDuplexSAWTxPRx DRx NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            14 / 83     Figure 1: Functional Diagram 2.5. Evaluation Board    In order to help you to develop applications with EC20, Quectel supplies an evaluation board (EVB), USB data cable, earphone, antenna and other peripherals to control or test the module.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            15 / 83     3 Application Interface  3.1. General Description    EC20 is equipped with a 76-pin 1.3mm pitch SMT pads plus 64-pin ground pads and reserved pads that connect to cellular application platform. Sub-interfaces included in these pads are described in detail in the following chapters:    Power supply   USIM interface   USB interface   UART interface   PCM interface   ADC interface   Status indication
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            16 / 83     3.2. Pin Assignment  The following figure shows the pin assignment of the EC20 module.  35362021222324252627282930313233341345672WAKEUP_INAP_READYRESERVEDW_DISABLE#NET_MODENET_STATUSVDD_EXTGNDGNDDBG_RXDDBG_TXDUSIM_PRESENCEUSIM_VDDUSIM_DATAUSIM_CLKUSIM_RSTRESERVED8910111213141516171819545352515049484746454443424140393837727170696867666564636261605958575655USIM_GNDGNDRESET_NPWRKEYGNDRESERVEDPCM_IN※PCM_OUT※PCM_SYNC※PCM_CLK※RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDANT_DIVGNDGNDUSB_VBUSUSB_DMUSB_DPRXDTXDDTRRTSCTSDCDRISTATUSVBAT_BBVBAT_BBVBAT_RFVBAT_RFGNDRESERVEDGNDGNDANT_MAINGNDANT_GNSSGNDADC1RESERVEDI2C_SDAI2C_SCLRESERVEDADC0GNDGNDGND737475767778798081828384100101102106107111112103104109105110899498889397869196859095998792108113RESERVEDRESERVED117126125124123122121120119118127128115 RESERVEDRESERVED116139140138137136135134133132131130129114RESERVEDPower PinsRESERVEDRESERVEDRESERVEDSignal Pins RESERVED PinsGND Pins Figure 2: Pin Assignment (Top View)    1.  Keep all RESERVED pins and unused pins unconnected. 2.  GND  pads  85~112  should  be  connected  to  ground  in  the  design,  and  RESERVED  pads  73~84 should not be designed in schematic and PCB decal.   3. “※” means these interface functions are only supported on Telematics version.    NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            17 / 83     3.3. Pin Description  The following tables show the EC20’s pin definition.  Table 3: IO Parameters Definition Type Description IO Bidirectional input/output DI Digital input DO Digital output PI Power input PO Power output AI Analog input AO Analog output OD Open drain  Table 4: Pin Description Power Supply   Pin Name   Pin No. I/O Description   DC Characteristics   Comment   VBAT_BB 59, 60 PI Power supply for module baseband part. Vmax=4.3V Vmin=3.3V Vnorm=3.8V It must be able to provide sufficient current up to 0.8A. VBAT_RF 57, 58 PI Power supply for module RF part. Vmax=4.3V Vmin=3.3V Vnorm=3.8V It must be able to provide sufficient current in a transmitting burst which typically rises to 1.8A. VDD_EXT 7 PO Provide 1.8V for external circuit. Vnorm=1.8V IOmax=50mA Power supply for external GPIO’s pull up circuits. GND 8, 9, 19, 22, 36, 46, 48, 50~54,  Ground.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            18 / 83     56, 72, 85~112 Turn On/Off Pin Name   Pin No. I/O Description   DC Characteristics   Comment   PWRKEY 21 DI Turn on/off the module. VIHmax=2.1V VIHmin=1.3V VILmax=0.5V Pull-up to 1.8V internally.   RESET_N 20 DI Reset the module. VIHmax=2.1V VIHmin=1.3V VILmax=0.5V Pull-up to 1.8V internally. Active low. Status Indication Pin Name   Pin No. I/O Description   DC Characteristics   Comment   STATUS 61 OD Indicate the module operating status. The drive current should be less than 0.9mA. Require external pull-up. If unused, keep it open. NET_MODE 5 DO Indicate the module network registration mode. VOHmin=1.35V VOLmax=0.45V 1.8V power domain. If unused, keep it open. NET_ STATUS 6 DO Indicate the module network activity status.   VOHmin=1.35V VOLmax=0.45V 1.8V power domain. If unused, keep it open. USB Interface Pin Name   Pin No. I/O Description   DC Characteristics   Comment   USB_VBUS 71 PI USB detection. Vmax=5.25V Vmin=3.0V Vnorm=5.0V  USB_DP 69 IO USB differential data bus. Compliant with USB 2.0 standard specification. Require differential impedance of 90ohm. USB_DM 70 IO USB differential data bus. Compliant with USB 2.0 standard specification. Require differential impedance of 90ohm. USIM Interface Pin Name   Pin No. I/O Description   DC Characteristics   Comment   USIM_GND 10  Specified ground for USIM card.     USIM_VDD 14 PO Power supply for For 1.8V USIM: Either 1.8V or 3V is
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            19 / 83     USIM card. Vmax=1.9V Vmin=1.7V  For 3.0V USIM: Vmax=3.05V Vmin=2.7V IOmax=50mA supported by the module automatically. USIM_DATA 15 IO Data signal of USIM card. For 1.8V USIM: VILmax=0.6V VIHmin=1.2V VOLmax=0.45V VOHmin=1.35V  For 3.0V USIM: VILmax=1.0V VIHmin=1.95V VOLmax=0.45V VOHmin=2.55V  USIM_CLK 16 DO Clock signal of USIM card. For 1.8V USIM: VOLmax=0.45V VOHmin=1.35V  For 3.0V USIM: VOLmax=0.45V VOHmin=2.55V  USIM_RST 17 DO Reset signal of USIM card. For 1.8V USIM: VOLmax=0.45V VOHmin=1.35V  For 3.0V USIM: VOLmax=0.45V VOHmin=2.55V  USIM_PRESENCE 13 DI USIM card insertion detection. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. UART Interface Pin Name   Pin No. I/O Description   DC Characteristics   Comment   RI 62 DO Ring indicator VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            20 / 83     DCD 63 DO Data carrier detection. VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. CTS 64 DO Clear to send. VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. RTS 65 DI Request to send. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. DTR 66 DI Data terminal ready, sleep mode control. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open. TXD 67 DO Transmit data. VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. RXD 68 DI Receive data. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. Debug UART Interface Pin Name   Pin No. I/O Description   DC Characteristics   Comment   DBG_TXD 12 DO Transmit data. VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. DBG_RXD 11 DI Receive data. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. ADC Interface Pin Name   Pin No. I/O Description   DC Characteristics   Comment   ADC0 45 AI General purpose analog to digital converter. Voltage range: 0.3V to VBAT_BB If unused, keep it open. ADC1 44 AI General purpose analog to digital converter. Voltage range: 0.3V to VBAT_BB If unused, keep it open.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            21 / 83     PCM Interface Pin Name   Pin No. I/O Description   DC Characteristics   Comment   PCM_IN 24 DI PCM data input. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. PCM_OUT 25 DO PCM data output. VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. PCM_SYNC 26 IO PCM data frame sync signal. VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. PCM_CLK 27 IO PCM clock. VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. In master mode, it’s an output signal. In slave mode, it is an input signal. If unused, keep it open. I2C Interface Pin Name Pin No. I/O Description   DC Characteristics   Comment   I2C_SCL 41 OD I2C serial clock.  External pull-up resistor is required. 1.8V only. If unused, keep it open. I2C_SDA 42 OD I2C serial data.  External pull-up resistor is required. 1.8V only. If unused, keep it open. RF Interface Pin Name   Pin No. I/O Description   DC Characteristics   Comment   ANT_DIV 35 AI Diversity antenna. 50ohm impedance. If unused, keep it open. ANT_MAIN 49 IO Main antenna. 50ohm impedance.  ANT_GNSS 47 AI GNSS antenna. 50ohm impedance. If unused, keep it open.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            22 / 83     GPIO Pins Pin Name Pin No. I/O Description   DC Characteristics   Comment   WAKEUP_IN 1 DI Sleep mode control.   VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain.   Pull-up by default.   Low level wakes up the module. If unused, keep it open. W_DISABLE# 4 DI Airplane mode control. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain.   Pull-up by default. In low voltage level, module can enter into airplane mode. If unused, keep it open. AP_READY 2 DI Application processor sleep state detection. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. RESERVED Pins Pin Name   Pin No. I/O Description   DC Characteristics   Comment   RESERVED 3, 18, 23, 28~34, 37~40, 43, 55, 73~84, 113~140  Reserved.  Keep these pins unconnected.  3.4. Operating Modes    The table below briefly summarizes the various operating modes referred in the following chapters.  Table 5: Overview of Operating Modes Mode Details   Normal Operation Idle Software is active. The module has registered to the network, and the module is ready to send and receive data. Talk/Data Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate. Minimum AT+CFUN  command can  set  the  module entering  into  a  minimum functionality  mode
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            23 / 83     Functionality Mode without removing the power supply. In this case, both RF function and USIM card will be invalid.   Airplane Mode AT+CFUN command and W_DISABLE# pin can set the module entering into airplane mode. In this case, RF function will be invalid. Sleep Mode In this mode, the current consumption of the module will be reduced to the minimal level. During this mode,  the module  can still receive paging message,  SMS,  voice call  and TCP/UDP data from the network normally. Power Down Mode In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.  3.5. Power Saving   3.5.1.  Sleep Mode EC20 is able to reduce its current consumption to a minimum value during the sleep mode. The following section describes EC20’s power saving procedure.  3.5.1.1.  UART Application If host communicates with module via UART interface, the following preconditions can let the module enter into the sleep mode.    Execute AT command AT+QSCLK=1 to enable the sleep mode.   Drive DTR to high level.    The following figure shows the connection between the module and host. RXDTXDRIDTRAP_READYTXDRXDEINTGPIOGPIOModule HostGND GND Figure 3: UART Sleep Application
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            24 / 83       Driving host DTR to low level will wake up the module.     When EC20 has URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details about RI behavior.   AP_READY will detect the sleep state of host (can be configured to high level or low level detection). Refer to AT command AT+QCFG=“apready” for details.  3.5.1.2.  USB Application with USB Remote Wakeup Function If host supports USB suspend/resume and remote wakeup function, the following part will show the sleep application.  There are three preconditions to let the module enter into the sleep mode.    Execute AT command AT+QSCLK=1 to enable the sleep mode.   Ensure the DTR is held in high level or keep it open.   The host’s USB bus which is connected with the module USB interface enters into suspended state.  The following figure shows the connection between the module and host. USB_VBUSUSB_DPUSB_DMAP_READYVDDUSB_DPUSB_DMGPIOModule HostGND GND Figure 4: Sleep Application with USB Remote Wakeup    Sending data to EC20 through USB will wake up the module.     When EC20 has URC to report, module will send remote wake-up signals on USB BUS to wake up the host.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            25 / 83     3.5.1.3.  USB Application with USB Suspend/Resume and RI Function If host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host. The following part will show the sleep application.  There are three preconditions to let the module enter into the sleep mode.    Execute AT command AT+QSCLK=1 to enable the sleep mode.   Ensure the DTR is held in high level or keep it open.  The host’s USB bus which is connected with the module USB interface enters into suspended state.  The following figure shows the connection between the module and host. USB_VBUSUSB_DPUSB_DMAP_READYVDDUSB_DPUSB_DMGPIOModule HostGND GNDRI EINT Figure 5: Sleep Application with RI    Sending data to EC20 through USB will wake up the module.     When EC20 has URC to report, RI signal will wake up the host.    3.5.1.4.  USB Application without USB Suspend Function If host does not support USB suspend function, you should disconnect USB_VBUS with additional control circuit to let the module enter into sleep mode.    Execute AT command AT+QSCLK=1 to enable the sleep mode.   Ensure the DTR is held in high level or keep it open.   Disconnect USB_VBUS.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            26 / 83     The following figure shows the connection between the module and host. USB_VBUSUSB_DPUSB_DMAP_READYVDDUSB_DPUSB_DMGPIOModule HostRI EINTPower SwitchGPIOGND GND Figure 6: Sleep Application without Suspend Function  Opening power switch to supply power to USB_VBUS will wake up the module.   You should pay attention to  the level match shown in dotted line between module and  host. Refer to document [1] for more details about EC20 power management application.  3.5.2.  Airplane Mode When  module  enters  into  the  airplane  mode,  the  RF  function  does  not  work,  and  all  AT  commands correlative with RF function will not be accessible. This mode can be set with the following ways.  Hardware: The W_DISABLE# pin is pulled up by default, driving it to low level will let the module enter into airplane mode.  Software: Command AT+CFUN provides the choice of the functionality level <fun>=0, 1, 4.   AT+CFUN=0: Minimum functionality mode, both USIM and RF function are disabled.  AT+CFUN=1: Full functionality mode (by default).  AT+CFUN=4: Airplane mode. RF function is disabled.    NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            27 / 83      1.  The  W_DISABLE#  control  function  is  disabled  in  firmware  by  default.  It  can  be  enabled  by  AT command AT+QCFG=“airplanecontrol”. Refer to document [2]. 2.    The execution of AT+CFUN command will not affect GNSS function.  3.6. Power Supply 3.6.1.  Power Supply Pins EC20  provides  four  VBAT  pins  dedicated  to  connect  with  the  external  power  supply.  There  are  two separate voltage domains for VBAT.      VBAT_RF with two pins for module RF part.   VBAT_BB with two pins for module baseband part.  The following table shows the VBAT pins and ground pins.  Table 6: VBAT and GND Pins Pin Name   Pin No. Description Min. Typ. Max. Unit VBAT_RF 57, 58 Power supply for module RF part. 3.3 3.8 4.3 V VBAT_BB 59, 60 Power supply for module baseband part. 3.3 3.8 4.3 V GND 8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, 85~112 Ground. - 0 - V  3.6.2.  Decrease Voltage Drop The power supply range of the module is 3.3V ~ 4.3V. Make sure the input voltage will never drop below 3.3V. The following figure shows the voltage drop during transmitting burst in 2G network, the voltage drop will be less in 3G and 4G network. NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            28 / 83     VBATTransmit burst Transmit burstMin.3.3VRippleDrop Figure 7: Power Supply Limits during Transmit Burst    To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used. Multi-layer ceramic chip (MLCC) capacitor can provide the best combination of low ESR. The main power supply from an external application has to be a single voltage source and expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm, and the width of VBAT_RF trace should be no less than 2mm, and the principle of the VBAT trace is the longer, the wider.  Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. The capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is suggested that you should use  a  zener diode of which  reverse zener voltage is  5.1V and  dissipation power is more than 0.5W. The following figure shows star structure of the power supply.   ModuleVBAT_RFVBAT_BBVBATC1100uFC6100nFC733pFC810pF++C2100nFC5100uFC333pFC410pFD15.1V Figure 8: Star Structure of the Power Supply  3.6.3.  Reference Design for Power Supply The power design for the module is very important, since the performance of power supply for the module largely depends on the power source. The power supply is capable of providing the sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that you should
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            29 / 83     use a LDO to supply power for module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as a power supply.  The following figure shows a reference design for +5V input power source. The designed output for the power supply is about 3.8V and the maximum load current is 3A.   DC_INMIC29302WUIN OUTENGNDADJ2 4135VBAT 100nF 470uF 100nF100K47K470uF470R51K 1%1%4.7K47KVBAT_EN Figure 9: Reference Circuit of Power Supply  3.6.4.  Monitor the Power Supply You can use the AT+CBC command to monitor the VBAT_BB voltage value. For more details, please refer to document [2].    3.7. Turn on and off Scenarios 3.7.1.  Turn on Module Using the PWRKEY The following table shows the pin definition of PWRKEY.  Table 7: PWRKEY Pin Description Pin Name   Pin No. Description DC Characteristics Comment PWRKEY 21 Turn on/off the module. VIHmax=2.1V VIHmin=1.3V VILmax=0.5V Pull-up to 1.8V internally.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            30 / 83     When EC20 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low  level  for  at  least  100ms.  It  is  recommended  to  use  an  open  drain/collector  driver  to  control  the PWRKEY.  After  STATUS  pin  (require  external  pull-up)  outputting  a  low  level,  PWRKEY  pin  can  be released. A simple reference circuit is illustrated in the following figure. Turn on pulsePWRKEY4.7K47K≥ 100ms Figure 10: Turn on the Module Using Driving Circuit  The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. When pressing the key, electrostatic strike may generate from finger. A reference circuit is shown in the following figure. PWRKEYS1Close to S1TVS Figure 11: Turn on the Module Using Keystroke
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            31 / 83     The turn on scenarios is illustrated as the following figure.  VIL ≤ 0.5VVIH  ≥ 1.3VVBATPWRKEY≥ 100msRESET_NSTATUS(OD)≤ 0.5s≥ 7.5sInactive ActiveUARTNOTEInactive ActiveUSB≥ 9s Figure 12: Timing of Turning on Module   Make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.  3.7.2.  Turn off Module The following procedures can be used to turn off the module:    Normal power down procedure: Turn off the module using the PWRKEY pin.   Normal power down procedure: Turn off the module using command AT+QPOWD.  3.7.2.1.  Turn off Module Using the PWRKEY Pin Driving  the  PWRKEY  to  a  low  level  voltage  for  at  least  0.6s,  the  module  will  execute  power-down procedure after PWRKEY is released. The power-down scenario is illustrated as the following figure. NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            32 / 83     VBATPWRKEYLog off network about 1s to 60s≥ 0.6sRUNNING Power-down procedure OFFModuleStatusSTATUS(OD) Figure 13: Timing of Turning off Module  3.7.2.2.  Turn off Module Using AT Command It is also a safe way to use AT command AT+QPOWD to turn off the module, which is similar to turning off the module via PWRKEY Pin.  Please refer to document [2] for details about the AT command of AT+QPOWD.  3.8. Reset the Module  The RESET_N can be used to reset the module. You can reset the module by driving the RESET_N to a low level voltage for more than 150ms and then releasing it.  Table 8: RESET_N Pin Description Pin Name   Pin No. Description DC Characteristics Comment RESET_N 20 Reset the module. VIHmax=2.1V VIHmin=1.3V VILmax=0.5V Pull-up to 1.8V internally.   Active low.  The  recommended circuit is  similar  to  the  PWRKEY  control  circuit. You can  use  open  drain/collector driver or button to control the RESET_N.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            33 / 83     Reset pulseRESET_N4.7K47K≥ 150ms Figure 14: Reference Circuit of RESET_N by Using Driving Circuit  RESET_NS2Close to S2TVS Figure 15: Reference Circuit of RESET_N by Using Button  The reset scenario is illustrated as the following figure. VIL  ≤ 0.5VVIH  ≥ 1.3VVBAT≥150msRESETTINGModule Status RUNNINGRESET_NRUNNING≥ 9s Figure 16: Timing of Resetting Module   1.  Use  the  RESET_N  only  when  turning  off  the  module  by  the  command  AT+QPOWD  and  the PWRKEY pin failed.   2.  Ensure that there is no large capacitance on the PWRKEY and RESET_N pins. NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            34 / 83     3.9. USIM Card Interface  The USIM card interface circuitry meets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and 3.0V USIM cards are supported.  Table 9: Pin Definition of the USIM Interface Pin Name   Pin No. I/O Description Comment USIM_VDD 14 PO Power supply for USIM card. Either  1.8V  or  3.0V  is  supported by the module automatically. USIM_DATA 15 IO Data signal of USIM card.  USIM_CLK 16 DO Clock signal of USIM card.  USIM_RST 17 DO Reset signal of USIM card.  USIM_PRESENCE 13 DI USIM card insertion detection.  USIM_GND 10  Specified ground for USIM card.   EC20 supports USIM card hot-plug via the USIM_PRESENCE pin. It supports low level and high level detection,  which  is  disabled  by  default.  For  details,  refer  to  document  [2]  about  the  command AT+QSIMDET.  The following figure shows the reference design of the 8-pin USIM connector. ModuleUSIM_VDDUSIM_GNDUSIM_RSTUSIM_CLKUSIM_DATAUSIM_PRESENCE22R22R22RVDD_EXT51K100nF USIM ConnectorGNDGND33pF 33pF 33pFVCCRSTCLK IOVPPGNDGNDUSIM_VDD15K Figure 17: Reference Circuit of 8-Pin USIM Connector
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            35 / 83     If  you  do  not  need  the  USIM  card  detection  function,  keep  USIM_PRESENCE  unconnected.  The reference circuit for using a 6-pin USIM card connector is illustrated as the following figure. ModuleUSIM_VDDUSIM_GNDUSIM_RSTUSIM_CLKUSIM_DATA 22R22R22R100nF USIM ConnectorGND33pF 33pF 33pFVCCRSTCLK IOVPPGNDGND15KUSIM_VDD Figure 18: Reference Circuit of 6-Pin USIM Connector  In order to enhance the reliability and availability of the USIM card in your application, please follow the criteria below in the USIM circuit design:    Keep layout of USIM card as close as possible to the module. Assure the length of the trace is less than 200mm.     Keep USIM card signal away from RF and VBAT alignment.   Assure the ground between module and USIM connector short and wide. Keep the width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.     To  avoid  cross-talk  between USIM_DATA  and  USIM_CLK, keep them  away with  each  other  and shield them with surrounded ground.     In order to offer good ESD protection, it is recommended to add TVS. The 22ohm resistors should be added  in  series  between  the  module  and  the  USIM  card  so  as  to  suppress  the  EMI  spurious transmission and enhance the ESD protection. The 33pF capacitors are used for filtering interference of EGSM900. Please note that the USIM peripheral circuit should be close to the USIM connector.   The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion is applied, and should be placed close to the USIM connector.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            36 / 83     3.10. USB Interface  EC20 contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) mode. The USB interface is used for AT command, data transmission, GNSS NMEA sentences output, software debug and firmware upgrade. The following table shows the pin definition of USB interface.    Table 10: USB Pin Description Pin Name   Pin No. I/O Description   Comment USB_DP 69 IO USB differential data bus (positive). Require differential impedance of 90Ω. USB_DM 70 IO USB differential data bus (minus). Require differential impedance of 90Ω. USB_VBUS 71 PI Used for detecting the USB connection. 3.0~5.25V Typical 5.0V GND 72  Ground   More details about the USB 2.0 specifications, please visit http://www.usb.org/home.  The USB interface is recommended to be reserved for firmware upgrade in your design. The following figure shows the recommended test points.   ModuleUSB_DMUSB_DPVBAT_BBUSB_VBUSPWRKEYGNDVBAT_RFUSB_DMUSB_DPVBATUSB_VBUSPWRKEYGNDConnectorESD ArrayGND Figure 19: Test Points for Firmware Upgrade
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            37 / 83     In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply with the following principles.    It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90ohm.   Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding not only upper and lower layer but also right and left side.   Pay attention to the influence of junction capacitance of ESD component on USB data lines. Typically, the capacitance value should be less than 2pF.   Keep the ESD components as close as possible to the connector.   Keep USB data test points traces short to avoid noise coupled on USB data lines. If possible, reserve 0R resistor on these two lines.   EC20 module can only be used as a slave device.  3.11. UART Interface  The  module  provides  two  UART  interfaces:  main  UART  interface  and  debug  UART  interface.  The following shows the different features.    Main UART interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600bps baud  rate,  the  default  is  115200bps.  This  interface  can  be  used  for  data  transmission  and  AT communication.   Debug UART interface supports 115200bps. It can be used for Linux console, log and GNSS NMEA output.    The following tables show the pin definition.  Table 11: Pin Definition of the UART Interface Pin Name   Pin No. I/O Description   Comment RI 62 DO Ring indicator 1.8V power domain DCD 63 DO Data carrier detection 1.8V power domain CTS 64 DO Clear to send 1.8V power domain NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            38 / 83     RTS 65 DI Request to send 1.8V power domain DTR 66 DI Sleep mode control 1.8V power domain TXD 67 DO Transmit data 1.8V power domain RXD 68 DI Receive data 1.8V power domain  Table 12: Pin Definition of the Debug UART Interface Pin Name   Pin No. I/O Description   Comment DBG_TXD 12 DO Transmit data 1.8V power domain DBG_RXD 11 DI Receive data 1.8V power domain  The logic levels are described in the following table.  Table 13: Logic Levels of Digital I/O Parameter Min. Max. Unit   VIL -0.3 0.6 V VIH 1.2 2.0 V VOL 0 0.45 V VOH 1.35 1.8 V  Module provides 1.8V UART interface. A level translator should be used if your application is equipped with  a  3.3V  UART  interface.  A  level  translator  TXS0108EPWR  provided  by  Texas  Instrument  is recommended. The following figure shows the reference design.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            39 / 83     VCCA VCCBOEA1A2A3A4A5A6A7A8GNDB1B2B3B4B5B6B7B8VDD_EXTRIDCDRTSRXDDTRCTSTXD51K 51K0.1uF 0.1uFRI_MCUDCD_MCURTS_MCURXD_MCUDTR_MCUCTS_MCUTXD_MCUVDD_MCUTranslator Figure 20: Reference Circuit with Translator Chip  Please visit http://www.ti.com for more information.  Another example with transistor translation circuit is shown as below. The circuit of dotted line can refer to the circuit of solid line. Please pay attention to direction of connection. Input dotted line of module should refer to input solid line of the module. Output dotted line of module should refer to output solid line of the module.  MCU/ARM/TXD/RXDVDD_EXT10KVCC_MCU 4.7K10KVDD_EXTTXDRXDRTSCTSDTRRI/RTS/CTSGNDGPIO DCDModuleGPIOEINTVDD_EXT 4.7KGND1nF1nF Figure 21: Reference Circuit with Transistor Circuit   Transistor circuit solution is not suitable for high baud rate which is more than 460Kbps. NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            40 / 83     3.12. PCM and I2C Interface  EC20 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes:    Primary mode (short sync, works as both master and slave)   Auxiliary mode (long sync, works as master only)  In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge; the PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports 128, 256, 512, 1024, 2048 and 4096kHz for different speech codec.  In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge; while the PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only.  EC20 supports 8-bit A-law and μ-law, and also 16-bit linear data formats. The following figures show the primary mode’s timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK and auxiliary mode’s timing relationship with 8kHz PCM_SYNC and 128kHz PCM_CLK.  PCM_CLKPCM_SYNCPCM_OUTMSB LSB MSBMSB LSB MSBPCM_IN125us1 2 256255  Figure 22: Primary Mode Timing
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            41 / 83      PCM_CLKPCM_SYNCPCM_OUTMSB LSBPCM_IN125usMSB1 2 1615LSB Figure 23: Auxiliary Mode Timing  The following table shows the pin definition of PCM and I2C interface which can be applied on audio codec design.  Table 14: Pin Definition of PCM and I2C Interface Pin Name   Pin No. I/O Description   Comment PCM_IN 24 DI PCM data input 1.8V power domain PCM_OUT 25 DO PCM data output 1.8V power domain PCM_SYNC 26 IO PCM data frame sync signal 1.8V power domain PCM_CLK 27 IO PCM data bit clock 1.8V power domain I2C_SCL 41 OD I2C serial clock Require external pull-up to 1.8V I2C_SDA 42 OD I2C serial data Require external pull-up to 1.8V  Clock and mode can be configured by AT command, and the default configuration is master mode using short sync data format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. In addition, EC20’s firmware has integrated the configuration on ALC5616 application with I2C interface. Refer to document [2] about the command AT+QDAI for details.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            42 / 83     The following figure shows the reference design of PCM interface with external codec IC.  PCM_INPCM_OUTPCM_SYNCPCM_CLKI2C_SCLI2C_SDAModule1.8V4.7K4.7KBCLKLRCKDACADCSCLSDABIASMICBIASINPINNLOUTPLOUTNALC5616 Figure 24: Reference Circuit of PCM Application with Audio Codec   1.    It  is  recommended  to  reserved  RC  (R=22ohm,  C=22pF)  circuit  on  the  PCM  lines,  especially  for   PCM_CLK. 2.    EC20 works as a master device pertaining to I2C interface.  3.13. ADC Function  The module provides two analog-to-digital converters (ADC) to digitize the analog signal to 15-bit digital data such as battery voltage, temperature and so on. Using AT command AT+QADC=0 can read the voltage value on ADC0 pin. Using AT command AT+QADC=1 can read the voltage value on ADC1 pin. For more details of these AT commands, please refer to document [2].  In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.    Table 15: Pin Definition of the ADC   Pin Name Pin No. Description ADC0 45 General purpose analog to digital converter ADC1 44 General purpose analog to digital converter NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            43 / 83     The following table describes the characteristic of the ADC function.  Table 16: Characteristic of the ADC Parameter Min. Typ. Max. Unit ADC0 Voltage Range 0.3  VBAT_BB V ADC1 Voltage Range 0.3  VBAT_BB V ADC Resolution  15  bits  3.14. Network Status Indication  The network indication pins can be used to drive a network status indicator LED. The module provides two pins which are NET_MODE and NET_STATUS. The following tables describe pin definition and logic level changes in different network status.    Table 17: Pin Definition of Network Indicator Pin Name   Pin No. I/O Description   Comment NET_MODE 5 DO Indicate the module network registration mode. 1.8V power domain NET_STATUS 6 DO Indicate the module network activity status. 1.8V power domain  Table 18: Working State of the Network Indicator Pin Name Status Description NET_MODE Always High Registered in LTE network Always Low Others NET_STATUS Flicker slowly (200ms High/1800ms Low) Network searching Flicker slowly (1800ms High/200ms Low) Idle Flicker quickly (125ms High/125ms Low) Data transfer is ongoing Always High Voice calling
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            44 / 83     A reference circuit is shown in the following figure. 4.7K47KVBAT2.2KModuleNetwork Indicator Figure 25: Reference Circuit of the Network Indicator 3.15. Operating Status Indication  The STATUS pin is an open drain output for indicating the module operation status. You can connect it to a GPIO of DTE  with pulled up, or as  LED indication circuit as below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state.    Table 19: Pin Definition of STATUS Pin Name   Pin No. I/O Description   Comment STATUS 61 OD Indicate the module operation status Require external pull-up  The following figure shows different design circuit of STATUS, you can choose either one according to your application demands. VDD_MCU10KModuleSTATUS MCU_GPIOModuleSTATUSVBAT2.2K Figure 26: Reference Circuit of the STATUS
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            45 / 83     3.16. Behavior of the RI  You can use command AT+QCFG=“risignaltype”,“physical” to configure RI behavior:  No matter which port URC is presented on, URC will trigger the behavior on RI pin.   URC can be output from UART port, USB AT port and USB modem port by command AT+QURCCFG. The default port is USB AT port.  In addition, RI behavior can be configured flexible. The default behavior of the RI is shown as below.  Table 20: Behavior of the RI State Response Idle RI keeps high level URC RI outputs 120ms low pulse when new URC returns  The  RI  behavior  can  be  changed  by  command  AT+QCFG=“urc/ri/ring”,  refer  to  document  [2]  for details. NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            46 / 83     4 GNSS Receiver  4.1. General Description  EC20 includes a fully integrated global navigation satellite system solution that supports gpsOne Gen8A of  Qualcomm  (GPS  and  GLONASS).  Compared  with  GPS  only,  dual  systems  increase  usable constellation, reduce coverage gaps and TTFF, and increase positioning accuracy, especially in rough urban environments.  EC20 works in standalone mode, allows device to demodulate GNSS assistance data, calculate position without  any  assistance  from  the  network,  and  suitable  for  various  application  needing  lowest-cost, accurate  position  determination.  EC20  supports  Qualcomm  gpsOneXTRA  technology  (one  kind  of A-GNSS),  which  can  download  XTRA  file  from  the  internet  server  to  enhance  the  TTFF.  XTRA  file contains predicted GPS and GLONASS satellites coordinates and clock biases valid for up to 7days. It is the best if XTRA file is downloaded every 1-2 days. And EC20 also supports SBAS (including WAAS, EGNOS and MSAS), which will improve fix accuracy.    EC20 provides power-saving solution named DPO (Dynamic Power Optimization), which attempts to turn off GNSS RF parts, reduces current consumption by 50% at most without impact on TTFF, thus extends battery life, and maximizes talk and standby time as well.      EC20 supports standard NMEA-0183 protocol, and outputs NMEA sentences with 1Hz via USB interface by default.    By default, EC20 GNSS engine is switched off, it has to be switched on with AT command. For more details about GNSS engine technology and configurations, please refer to document [3].
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            47 / 83     4.2. GNSS Performance  The following table shows EC20 GNSS performance.  Table 21: GNSS Performance Parameter Description Conditions Typ. Unit Sensitivity (GNSS) Cold start Autonomous -146 dBm Reacquisition Autonomous -156 dBm Tracking Autonomous -157 dBm TTFF (GNSS) Cold start @open sky Autonomous 35 s XTRA enabled 22 s Warm start @open sky Autonomous 30 s XTRA enabled 3.5 s Hot start @open sky Autonomous 2 s XTRA enabled 1.5 s Accuracy (GNSS) CEP-50 Autonomous @open sky <1.5 m   1.  Tracking sensitivity: the lowest GPS signal value at the antenna port for which the module can keep on positioning for 3 minutes.   2.  Reacquisition sensitivity: the lowest GPS signal value at the antenna port for which the module can fix position again within 3 minutes after loss of lock. 3.  Cold start sensitivity: the lowest GPS signal value at the antenna port for which the module fixes position within 3 minutes after executing cold start command.      NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            48 / 83     4.3. Layout Guideline  The following layout guideline should be taken into account in your design.    Maximize the distance between the GNSS antenna, the main antenna and Rx-diversity antenna.     Noisy digital circuits such as the USIM card, USB interface, Camera module, Display connector and SD card should be away from the antenna.   Use  ground  vias  around  the  GNSS  trace  and  sensitive  analog  signal  traces  to  provide  coplanar isolation and protection.   Keep 50ohm characteristic impedance of the ANT_GNSS trace.  Refer to Chapter 5 for GNSS reference design and antenna consideration.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            49 / 83     5 Antenna Interface  EC20 antenna interface includes a main antenna, an Rx-diversity antenna, which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna. The antenna interface has an impedance of 50ohm.  5.1. Main/Rx-diversity Antenna Interface 5.1.1.  Pin Definition The main antenna and Rx-diversity antenna pins definition are shown below.  Table 22: Pin Definition of the RF Antenna Pin Name Pin No. I/O Description Comment ANT_MAIN 49 IO Main antenna 50ohm impedance ANT_DIV 35 AI Receive diversity antenna 50ohm impedance  5.1.2.  Operating Frequency Table 23: The Module Operating Frequencies 3GPP Band Transmit Receive Unit B2 (1900) 1850 ~ 1910 1930 ~ 1990 MHz B4 1710 ~ 1755 2110 ~ 2155 MHz B5 (850/BC0) 824 ~ 849 869 ~ 894 MHz B12 699 ~ 716 728 ~ 746 MHz B17 704 ~ 716 734 ~ 746 MHz
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            50 / 83     5.1.3.  Reference Design The reference design of ANT_MAIN and ANT_DIV antenna is shown as below. It should reserve a π-type matching circuit for better RF performance. The capacitors are not mounted by default. ANT_MAINR1    0RC1Module MainantennaNMC2NMR2    0RC3Diversity antennaNMC4NMANT_DIV Figure 27: Reference Circuit of Antenna Interface   Keep  a  proper  distance  between  main  antenna  and  Rx-diversity  antenna  to  improve  the  receiving sensitivity. 5.2. GNSS Antenna Interface  The following tables show the GNSS antenna pin definition and frequency specification.  Table 24: Pin Definition of GNSS Antenna Pin Name   Pin No. I/O Description   Comment ANT_GNSS 47 AI GNSS antenna 50ohm impedance  NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            51 / 83     Table 25: GNSS Frequency Type Frequency Unit GPS 1575.42 ± 1.023 MHz GLONASS 1597.5 ~ 1605.8 MHz  The reference design of GNSS antenna is shown as below. GNSS AntennaVDDModuleANT_GNSS47nH10R 0.1uF100pFNMNM Figure 28: Reference Circuit of GNSS Antenna   1.  You can choose an external LDO to supply power according to the active antenna. 2. If you design it with passive antenna, the VDD circuit is not needed. 5.3. Antenna Installation 5.3.1.  Antenna Requirement The following table shows the requirement on main antenna, Rx-diversity antenna and GNSS antenna.  Table 26: Antenna Requirements Type Requirements NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            52 / 83     GNSS Frequency range: 1565 - 1607MHz Polarization: RHCP or linear VSWR: < 2 (Typ.) Passive antenna gain: > 0dBi Active antenna noise figure: < 1.5dB Active antenna gain: > -2dBi Active antenna embedded LNA gain: 20dB (Typ.) Active antenna total gain: > 18dBi (Typ.) GSM/WCDMA/ LTE VSWR: ≤ 2   Gain (dBi): 1   Max Input Power (W): 50   Input Impedance (ohm): 50   Polarization Type: Vertical   Cable Insertion Loss: < 1dB (GSM850/900, WCDMA B5, LTE B5/B12/B17)   Cable Insertion Loss: < 1.5dB   (GSM1900, WCDMA B2/B4, LTE B2/B4)              5.3.2.  Install the Antenna with RF Connector   The  following  figure  is  the  antenna  installation  with  RF  connector  provided  by  HIROSE.  The recommended RF connector is UF.L-R-SMT.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            53 / 83      Figure 29: Dimensions of the UF.L-R-SMT Connector (Unit: mm)  You can use U.FL-LP serial connector listed in the following figure to match the UF.L-R-SMT.  Figure 30: Mechanicals of UF.L-LP Connectors  The following figure describes the space factor of mated connector.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            54 / 83      Figure 31: Space Factor of Mated Connector (Unit: mm)  For more details, please visit http://www.hirose.com.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            55 / 83     6 Electrical, Reliability and Radio Characteristics 6.1. Absolute Maximum Ratings  Absolute maximum ratings for power supply and voltage on digital and analog pins of module are listed in the following table.  Table 27: Absolute Maximum Ratings Parameter Min. Max. Unit VBAT_RF/VBAT_BB -0.3 4.7 V USB_VBUS -0.3 5.5 V Peak Current of VBAT_BB   0   0.8 A Peak Current of VBAT_RF 0 1.8 A Voltage at Digital Pins -0.3 2.3 V Voltage at ADC0 0 VBAT_BB V Voltage at ADC1 0 VBAT_BB V
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            56 / 83     6.2. Power Supply Ratings  Table 28: The Module Power Supply Ratings Parameter Description Conditions Min. Typ. Max. Unit VBAT VBAT_BB and VBAT_RF Voltage must stay within the min/max values, including voltage drop, ripple and spikes. 3.3 3.8 4.3 V Voltage drop during transmitting burst Maximum power control level on GSM850 and EGSM900.   400 mV IVBAT Peak supply current (during transmission slot) Maximum power control level on GSM850 and EGSM900.  1.8 2.0 A USB_VBUS USB detection  3.0 5.0 5.25 V  6.3. Operating Temperature  The operating temperature is listed in the following table.  Table 29: Operating Temperature Parameter Min. Typ. Max. Unit Normal Temperature -35 25 75 ºC  Restricted Operation -40 ~ -35  75 ~ 85 ºC  Storage Temperature -45  90 ºC    The  maximum  surface  temperature  may  be  up  to  100ºC   when  module  works  at  85ºC   ambient temperature.  NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            57 / 83     6.4. Current Consumption  The values of current consumption are shown below.  Table 30: EC20 Current Consumption Parameter Description Conditions Typ. Unit IVBAT OFF state   Power down 20 uA Sleep state AT+CFUN=0 (USB disconnected) 1.05 mA GSM DRX=2 (USB disconnected) 3.7 mA GSM DRX=9 (USB disconnected) 1.8 mA WCDMA DRX=6 (USB disconnected) 2.8 mA WCDMA DRX=9 (USB disconnected) 1.5 mA GPRS data transfer (GNSS off) GSM850 4DL/1UL PCL=5 233 mA GSM850 3DL/2UL PCL=5 382 mA GSM850 2DL/3UL PCL=5 426 mA GSM850 1DL/4UL PCL=5 510 mA PCS1900 4DL/1UL PCL=0 198 mA PCS1900 3DL/2UL PCL=0 333 mA PCS1900 2DL/3UL PCL=0 385 mA PCS1900 1DL/4UL PCL=0 443 mA EDGE data transfer (GNSS off) GSM850 4DL/1UL PCL=8 160 mA GSM850 3DL/2UL PCL=8 261 mA GSM850 2DL/3UL PCL=8 351 mA GSM850 1DL/4UL PCL=8 442 mA PCS1900 4DL/1UL PCL=2 154 mA PCS1900 3DL/2UL PCL=2 249 mA PCS1900 2DL/3UL PCL=2 333 mA
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            58 / 83     PCS1900 1DL/4UL PCL=2 413 mA WCDMA data transfer (GNSS off) WCDMA B2 HSDPA @max power 496 mA WCDMA B2 HSUPA @max power 498 mA WCDMA B4 HSDPA @max power 442 mA WCDMA B4 HSUPA @max power 465 mA WCDMA B5 HSDPA @max power 464 mA WCDMA B5 HSUPA @max power 445 mA LTE data transfer (GNSS off) LTE-FDD B2 @max power 584 mA LTE-FDD B4 @max power 564 mA LTE-TDD B5 @max power 521 mA LTE-TDD B12 @max power 432 mA LTE-TDD B17 @max power 431 mA GSM voice call GSM850 @PCL=5 247 mA PCS1900 @PCL=0 207 mA WCDMA voice call WCDMA B2 @max power 470 mA WCDMA B4 @max power 429 mA WCDMA B5 @max power 450 mA  6.5. RF Output Power  Please refer to TUNE UP document. 6.6. RF Receiving Sensitivity  The following table shows the conducted RF receiving sensitivity of EC20 module.
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            59 / 83     Table 31: EC20 Conducted RF Receiving Sensitivity Frequency   Receive Sensitivity (Typ.) GSM850   -111dBm PCS1900 -109dBm WCDMA B2 -111dBm WCDMA B4 -111dBm WCDMA B5 -112dBm LTE FDD B2 (20M) -96dBm LTE FDD B4 (20M) -96dBm LTE FDD B5 (10M) -98dBm LTE FDD B12 (10M) -99dBm LTE FDD B17 (10M) -99dBm  6.7. Electrostatic Discharge  The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging  procedures  must  be  applied  throughout  the  processing,  handling  and  operation  of  any application that incorporates the module.  The following table shows the module electrostatics discharge characteristics.  Table 32: Electrostatics Discharge Characteristics Tested Points Contact Discharge Air Discharge Unit VBAT, GND ±5 ±10 kV All Antenna Interfaces ±4 ±8 kV Other Interfaces ±0.5 ±1 kV
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            60 / 83     7 Mechanical Dimensions  This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm.  7.1. Mechanical Dimensions of the Module (32+/-0.15)(29+/-0.15)0.82.4+/-0.2 Figure 32: Module Top and Side Dimensions
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            61 / 83     29.032.0 Figure 33: Module Bottom Dimensions (Bottom View)  Figure 34: Bottom Pads Dimensions (Bottom View)
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            62 / 83     7.2. Footprint of Recommendation 2932Keepout areaKeepout area Figure 35: Recommended Footprint (Top View)   In order to maintain the module, keep about 3mm between the module and other components in the host PCB.  NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            63 / 83      Figure 36: Recommended Stencil    1.  The thickness of stencil for the pads at the bottom of module is recommended as 0.18mm, and the thickness of LCC pins is recommended as 0.2mm. 2.  For better SMT solder, the GND pad at the bottom of the module is divided into four small pads. 3.  The red areas are recommended footprint shown in Figure 35.         NOTES
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            64 / 83     If you design with pins 117~140, the following footprint is recommended. 29.032.0Keepout area Figure 37: Recommended Footprint with Pins 117~140
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            65 / 83     7.3. Top View of the Module  Figure 38: Top View of the Module 7.4. Bottom View of the Module  Figure 39: Bottom View of the Module
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            66 / 83     8 Storage and Manufacturing  8.1. Storage  EC20 is stored in the vacuum-sealed bag. The restriction of storage condition is shown as below.    Shelf life in sealed bag is 12 months at < 40ºC/90%RH.    After this bag is opened, devices that will be subjected to reflow solder or other high temperature process must be:    Mounted within 72 hours at factory conditions of ≤ 30ºC/60%RH.   Stored at <10% RH.  Devices require bake before mounting, if:    Humidity indicator card is >10% when read 23ºC±5ºC.   Mounted for more than 72 hours at factory conditions of ≤ 30ºC/60% RH.  If baking is required, devices may be baked for 48 hours at 125ºC±5ºC.   As  plastic  container  cannot  be  subjected  to  high  temperature,  module  needs  to  be  taken  out  from container  to  high  temperature  (125ºC)  bake.  If  shorter  bake  times  are  desired,  please  refer  to IPC/JEDECJ-STD-033 for bake procedure.  8.2. Manufacturing and Welding  The squeegee should push the paste on the surface of the stencil that makes the paste fill the stencil openings and penetrate to the PCB. The force on the squeegee should be adjusted so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil at the hole of the module pads should be 0.18mm. For details, please refer to document [4].  NOTE
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            67 / 83     It is suggested that peak reflow  temperature is 235 ~  245ºC  (for SnAg3.0Cu0.5 alloy). Absolute max reflow  temperature  is  260ºC.  To  avoid  damage  to  the  module  when  it  was  repeatedly  heated,  it  is suggested that  the module should  be  mounted  after the  first  panel has  been  reflowed. The following picture is the actual diagram which we have operated. Time50 100 150 200 250 30050100150200250   160 ºC   200 ºC217070s~120s40s~60sBetween 1~3 ºC/sPreheat Heating CoolingºCsLiquids Temperature Temperature Figure 40: Liquids Temperature
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            68 / 83     8.3. Packaging  EC20 is packaged in the tap and reel carriers. One reel is 11.53m length and contains 250pcs modules. The figure below shows the package details, measured in mm.  30.3±0.1529.3±0.1530.3±0.1532.5±0.1533.5±0.150.35±0.054.2±0.153.1±0.1532.5±0.1533.5±0.154.00±0.12.00±0.11.75±0.120.20±0.1544.00±0.344.00±0.11.50±0.1  Direction of feedCover tape1310044.5+0.20-0.0048.5 Figure 41: Carrier Tape
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            69 / 83     9 Appendix A Reference  Table 33: Related Documents   SN Document Name Remark [1] Quectel_EC20_Power_Management_Application_Note EC20 Power Management Application Note [2] Quectel_EC20_AT_Commands_Manual EC20 AT Commands Manual [3] Quectel_EC20_GNSS_AT_Commands_Manual EC20 GNSS AT Commands Manual [4] Quectel_Module_Secondary_SMT_User_Guide Module Secondary SMT User Guide  Table 34: Terms and Abbreviations   Abbreviation Description AMR Adaptive Multi-rate bps Bits Per Second CHAP   Challenge Handshake Authentication Protocol CS   Coding Scheme CSD   Circuit Switched Data CTS   Clear To Send DC-HSPA+ Dual-carrier High Speed Packet Access DFOTA Delta Firmware Upgrade Over The Air DL Downlink DTR   Data Terminal Ready DTX   Discontinuous Transmission
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            70 / 83     EFR Enhanced Full Rate EGSM Extended GSM900 band (includes standard GSM900 band) ESD   Electrostatic Discharge FDD Frequency Division Duplex FR Full Rate GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System GMSK Gaussian Minimum Shift Keying GNSS Global Navigation Satellite System GPS Global Positioning System GSM Global System for Mobile Communications HR Half Rate HSPA High Speed Packet Access HSDPA High Speed Downlink Packet Access HSUPA High Speed Uplink Packet Access I/O   Input/Output Inorm Normal Current LED   Light Emitting Diode LNA Low Noise Amplifier LTE Long Term Evolution MIMO Multiple Input Multiple Output MO   Mobile Originated MS   Mobile Station (GSM engine) MT   Mobile Terminated PAP   Password Authentication Protocol PCB   Printed Circuit Board
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            71 / 83     PDU   Protocol Data Unit PPP   Point-to-Point Protocol QAM Quadrature Amplitude Modulation QPSK Quadrature Phase Shift Keying RF   Radio Frequency RHCP Right Hand Circularly Polarized Rx   Receive SIM   Subscriber Identification Module SMS   Short Message Service TDD Time Division Duplexing TDMA   Time Division Multiple Access TD-SCDMA Time Division-Synchronous Code Division Multiple Access TX   Transmitting Direction UL Uplink UMTS Universal Mobile Telecommunications System URC   Unsolicited Result Code USIM Universal Subscriber Identity Module Vmax Maximum Voltage Value   Vnorm Normal Voltage Value Vmin Minimum Voltage Value VIHmax Maximum Input High Level Voltage Value VIHmin Minimum Input High Level Voltage Value VILmax Maximum Input Low Level Voltage Value VILmin Minimum Input Low Level Voltage Value VImax Absolute Maximum Input Voltage Value
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            72 / 83     VImin Absolute Minimum Input Voltage Value VOHmax Maximum Output High Level Voltage Value VOHmin Minimum Output High Level Voltage Value VOLmax Maximum Output Low Level Voltage Value VOLmin Minimum Output Low Level Voltage Value VSWR Voltage Standing Wave Ratio WCDMA Wideband Code Division Multiple Access
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            73 / 83     10 Appendix B GPRS Coding Scheme  Table 35: Description of Different Coding Schemes   Scheme   CS-1 CS-2 CS-3 CS-4 Code Rate   1/2 2/3 3/4 1 USF   3 3 3 3 Pre-coded USF   3   6 6 12 Radio Block excl.USF and BCS 181   268 312 428 BCS 40 16 16 16 Tail 4   4 4 - Coded Bits 456   588 676 456 Punctured Bits 0 132 220 - Data Rate Kb/s 9.05   13.4 15.6 21.4
                                                                       LTE  Module                                                                   EC20  Hardware  Design  EC20_Hardware_Design                  Confidential / Released                            74 / 83     11 Appendix C GPRS Multi-slot Class  Twenty-nine  classes  of  GPRS  multi-slot  modes  are  defined  for  MS  in  GPRS  specification.  Multi-slot classes are product dependant, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.    The description of different multi-slot classes is shown in the following table.  Table 36: GPRS Multi-slot Classes Multislot Class Downlink Slots Uplink Slots Active Slots 1 1 1 2 2 2 1 3 3 2 2 3 4 3 1 4 5 2 2 4 6 3 2 4 7 3 3 4 8 4 1 5 9 3 2 5 10 4 2 5 11 4 3 5 12 4 4 5
                                                                                                                                              UMTS/HSPA Module                                                                 EC20  Hardware  Design  EC20_Hardware_Design                 Confidential / Released                              75 / 83      12 Appendix D EDGE Modulation and Coding Scheme    Table 37: EDGE Modulation and Coding Scheme Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot 4 Timeslot CS-1: GMSK / 9.05kbps 18.1kbps 36.2kbps CS-2: GMSK / 13.4kbps 26.8kbps 53.6kbps CS-3: GMSK / 15.6kbps 31.2kbps 62.4kbps CS-4: GMSK / 21.4kbps 42.8kbps 85.6kbps MCS-1 GMSK C 8.80kbps 17.60kbps 35.20kbps MCS-2 GMSK B 11.2kbps 22.4kbps 44.8kbps MCS-3 GMSK A 14.8kbps 29.6kbps 59.2kbps MCS-4 GMSK C 17.6kbps 35.2kbps 70.4kbps MCS-5 8-PSK B 22.4kbps 44.8kbps 89.6kbps MCS-6 8-PSK A 29.6kbps 59.2kbps 118.4kbps MCS-7 8-PSK B 44.8kbps 89.6kbps 179.2kbps MCS-8 8-PSK A 54.4kbps 108.8kbps 217.6kbps MCS-9 8-PSK A 59.2kbps 118.4kbps 236.8kbps

Navigation menu